Files
Buffteks-Website/webpages/buff_bot.py
2025-01-27 13:53:41 -06:00

144 lines
5.9 KiB
Python

import streamlit as st
from openai import OpenAI # OpenAI compatibility
import json
# reference:
# - Use OpenAI to connect Ollama: https://ollama.com/blog/openai-compatibility
# - Build Chatbot with streamlit: https://streamlit.io/generative-ai
# - Ollama docker: https://hub.docker.com/r/ollama/ollama
# - [TBD] Finetune: https://docs.loopin.network/tutorials/LLM/llama3-finetune
# Clear chat history
def clear_chat():
st.session_state.messages = []
st.toast("Chat Cleaned", icon="🧹")
def buffbot():
# Set up the Streamlit app
st.markdown("<h1 style='text-align: center; color: #451002;'>BuffBot🦬</h1>", unsafe_allow_html=True)
st.markdown("<h5 style='text-align: center;'> Your friendly AI chatbot powered by LLM! 🤖 </h3>", unsafe_allow_html=True)
# Display info and source code
with st.expander("See Source Code"):
with open(__file__, "r", encoding="utf-8") as f:
st.code(f.read(), language="python")
st.divider()
# Select AI model for chatbot
model_options = ["deepseek-r1:1.5b", "llama3.2:1b", "deepseek-chat", ]
# on_change callback to clear chat history when model is changed
selected_model = st.selectbox("**👉Please select a model to start**", model_options, on_change=clear_chat)
# Initialize session state to store chat history and message count
if "messages" not in st.session_state:
st.session_state.messages = []
# Initialize message count
if "message_count" not in st.session_state:
st.session_state.message_count = 0
# Load API credentials from config.json
# the config file contains the API key and base URL for the selected model
"""
{
"deepseek":{
"api_url": "https://api.deepseek.com",
"api_key": "YOUR_API_KEY",
"model":"deepseek-chat"
},
"ollama3.2:1b":{
"api_url": "http://localhost:11434/v1",
"api_key": "ollama",
"model":"llama3.2:1b"
},
"deepseek-r1:1.5b":{
"api_url": "http://localhost:11434/v1",
"api_key": "ollama",
"model":"deepseek-r1:1.5b"
},
}
"""
# The API key and base URL are loaded based on the selected model
with open('app_config.json') as config_file:
config = json.load(config_file)
# deepseek-chat model, online API
if selected_model == "deepseek-chat":
api_base_url = config[selected_model]["api_url"]
api_key = config[selected_model]["api_key"]
model = config[selected_model]["model"]
st.info("Powered by the online [DeepSeek](https://www.deepseek.com/) API!\
Just a heads up, you have 10 messages to use.")
# Set the maximum number of user messages
MAX_USER_MESSAGES = 10
# llama3.2:1b model, local API
if selected_model == "llama3.2:1b":
api_base_url = config[selected_model]["api_url"]
api_key = config[selected_model]["api_key"]
model = config[selected_model]["model"]
st.info("Powered by local llama3.2:1b model via [Ollama](https://ollama.com/library/llama3.2:1b)!\
Just a heads up, you have 100 messages to use.")
MAX_USER_MESSAGES = 100
if selected_model == "deepseek-r1:1.5b":
api_base_url = config[selected_model]["api_url"]
api_key = config[selected_model]["api_key"]
model = config[selected_model]["model"]
st.info("Powered by local deepseek-r1:1.5b model via [Ollama](https://ollama.com/library/deepseek-r1:1.5b)!\
Just a heads up, you have 100 messages to use.")
MAX_USER_MESSAGES = 100
# Initialize OpenAI client to connect with the selected model API
client = OpenAI(api_key=api_key, base_url=api_base_url)
# print welcome message
with st.chat_message("assistant", avatar="🦬"):
st.markdown("Welcome to BuffBot! What Can I Do for You Today?🌞")
# Display chat history with different avatars for user and AI assistant
for message in st.session_state.messages:
if message["role"] == "user":
avatar="🤠"
else:
avatar="🦬"
with st.chat_message(message["role"], avatar=avatar):
st.markdown(message["content"])
if st.session_state.message_count < MAX_USER_MESSAGES:
# Get user input
if prompt := st.chat_input("Type your message here..."):
# Add user message to chat history
st.session_state.messages.append({"role": "user", "content": prompt})
st.session_state.message_count += 1
# Display user message with cowboy avatar
with st.chat_message("user", avatar="🤠"):
st.markdown(prompt)
# Generate reply
with st.chat_message("assistant", avatar="🦬"):
with st.spinner('Thinking...'):
# Call the selected model API to generate a response
stream = client.chat.completions.create(
model=selected_model,
messages=[
{"role": m["role"], "content": m["content"]}
for m in st.session_state.messages
],
stream=True, # stream the response
)
# Display the response from the model API
response = st.write_stream(stream)
# Add the AI assistant response to the chat history
st.session_state.messages.append({"role": "assistant", "content": response})
else:
st.warning("You have reached the maximum number of messages allowed.\
Please switch to another model to continue chatting.")
# Clear chat history
if st.button("Clear Chat"):
clear_chat()
st.rerun()