add chatbot with local llama3.2 1B model on Ollama

This commit is contained in:
BuffTechTalk
2025-01-10 00:27:38 -06:00
parent 7b0491b769
commit 9a28b3eaba
4 changed files with 80 additions and 5 deletions

6
chatbot_config.json Normal file
View File

@@ -0,0 +1,6 @@
{
"api_url": "https://api.deepseek.com",
"api_key": "sk-12165b127043441697a8940918e207ac",
"ollama_api_url": "http://localhost:11434/v1",
"ollama_api_key": "ollama"
}

View File

@@ -1,4 +0,0 @@
{
"api_url": "https://api.deepseek.com",
"api_key": "sk-12165b127043441697a8940918e207ac"
}

View File

@@ -12,7 +12,7 @@ with st.expander("See Source Code"):
st.code(f.read(), language="python")
# Load API credentials from config.json
with open('config.json') as config_file:
with open('chatbot_config.json') as config_file:
config = json.load(config_file)
openai_api_base_url = config["api_url"]
openai_api_key = config["api_key"]

73
llama_chatbot.py Normal file
View File

@@ -0,0 +1,73 @@
import streamlit as st
from openai import OpenAI # OpenAI compatibility
import json
# reference:
# - Use OpenAI to connect Ollama: https://ollama.com/blog/openai-compatibility
# - Build Chatbot with streamlit: https://streamlit.io/generative-ai
# - finetune: https://docs.loopin.network/tutorials/LLM/llama3-finetune
# - Ollama docker: https://hub.docker.com/r/ollama/ollama
# Set up the Streamlit app
st.markdown("<h1 style='text-align: center; color: #451002;'>BuffBot🦬</h1>", unsafe_allow_html=True)
# st.subheader()
st.info("Powered by llama3.2:1b model via [Ollama](https://ollama.com/library/llama3.2:1b)!")
with st.expander("See Source Code"):
with open(__file__, "r") as f:
st.code(f.read(), language="python")
# Load API credentials from config.json
with open('chatbot_config.json') as config_file:
config = json.load(config_file)
api_base_url = config["ollama_api_url"]
api_key = config["ollama_api_key"]
client = OpenAI(api_key=api_key, base_url=api_base_url)
# Initialize session state to store chat history and message count
if "messages" not in st.session_state:
st.session_state.messages = []
# print welcome message
with st.chat_message("assistant", avatar="🦬"):
st.markdown("Welcome to BuffBot! How can I help you today??")
# Display chat history
for message in st.session_state.messages:
if message["role"] == "user":
avatar="🤠"
else:
avatar="🦬"
with st.chat_message(message["role"], avatar=avatar):
st.markdown(message["content"])
# Chat input
if prompt := st.chat_input("Type your message..."):
# Add user message to chat history
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user", avatar="🤠"):
st.markdown(prompt)
# Call DeepSeek for a response
with st.chat_message("assistant", avatar="🦬"):
with st.spinner('Thinking...'):
stream = client.chat.completions.create(
model="llama3.2:1b",
messages=[
{"role": m["role"], "content": m["content"]}
for m in st.session_state.messages
],
stream=True,
)
response = st.write_stream(stream)
st.session_state.messages.append({"role": "assistant", "content": response})
if st.button("Clear Chat"):
st.session_state.messages = []
st.toast("Chat Cleaned", icon="🧹")